Multifidelity data fusion in convolutional encoder/decoder networks

نویسندگان

چکیده

We analyze the regression accuracy of convolutional neural networks assembled from encoders, decoders and skip connections trained with multifidelity data. Besides requiring significantly less trainable parameters than equivalent fully connected networks, encoder, decoder, encoder-decoder or decoder-encoder architectures can learn mapping between inputs to outputs arbitrary dimensionality. demonstrate their when on a few high-fidelity many low-fidelity data generated models ranging one-dimensional functions Poisson equation solvers in two-dimensions. finally discuss number implementation choices that improve reliability uncertainty estimates by Monte Carlo DropBlocks, compare among low-, high- approaches.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Valuing Indirect Citations in Citation Networks using Data Fusion

Any scientific activity requires awareness of previous related activities. Citation networks are the networks in which each document is compared as a link of a chain with its previous and next documents, and the documents with the highest number of citations are considered as the most effective ones in a domain. Most of the introduced methods use direct citations for valuing the documents. One ...

متن کامل

Multifidelity probability estimation via fusion of estimators

This paper develops a multifidelity method that enables estimation of failure probabilities for expensive-to-evaluate models via a new combination of techniques, drawing from information fusion and importance sampling. We use low-fidelity models to derive biasing densities for importance sampling and then fuse the importance sampling estimators such that the fused multifidelity estimator is unb...

متن کامل

Fusion of Heterogeneous Data in Convolutional Networks for Urban Semantic Labeling (Invited Paper)

In this work, we present a novel module to perform fusion of heterogeneous data using fully convolutional networks for semantic labeling. We introduce residual correction as a way to learn how to fuse predictions coming out of a dual stream architecture. Especially, we perform fusion of DSM and IRRG optical data on the ISPRS Vaihingen dataset over a urban area and obtain new state-of-the-art re...

متن کامل

Adaptive Decision Fusion in Detection Networks

In a detection network, the final decision is made by fusing the decisions from local detectors. The objective of that decision is to minimize the final error probability. To implement and optimal fusion rule, the performance of each detector, i.e. its probability of false alarm and its probability of missed detection as well as the a priori probabilities of the hypotheses, must be known. How...

متن کامل

Adaptive Decision Fusion in Detection Networks

In a detection&#10 network, the final decision is made by fusing the decisions from local detectors. The objective of that decision is to minimize the final error probability. To implement and optimal fusion rule, the performance of each detector, i.e. its probability of false alarm and its probability of missed detection as well as the a priori probabilities of the hypotheses, must be known. H...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational Physics

سال: 2023

ISSN: ['1090-2716', '0021-9991']

DOI: https://doi.org/10.1016/j.jcp.2022.111666